3.2 Problems

Problem 1. Use Neville's method to approximate $\sqrt{3}$ with the following functions and values:

1. $f(x)=3^{x}$ and the values $x_{0}=-2, x_{1}=-1, x_{2}=0, x_{3}=1, x_{4}=2$
2. $f(x)=\sqrt{x}$ and the values $x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=5$
3. compare the accuracy of the approximations in parts (a) and (b)

Problem 2. Let $P_{3}(x)$ be the interpolating polynomial for the data $(0,0),(.5, y),(1,3),(2,2)$, find y if the coefficient of x^{3} in $P_{3}(x)$ is 6 .

3.3 Problems

Problem 3. Use Newton forward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specfied value using each of the polynomials

1. $f(.43)$ if

x_{i}	$f\left(x_{i}\right)$
0	1
.25	1.64872
.5	2.71828
.75	4.48169

Problem 4. Show that the polynomial interpolating the following data has degree three.

x	-2	-1	0	1	2	3
$f(x)$	1	4	11	16	13	-4

